Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures.
نویسندگان
چکیده
The process of osteoclastic bone resorption is complex and regulated at multiple levels. The role of osteoclast (OCL) fusion and motility in bone resorption are unclear, with the movement of OCL on bone largely unexplored. RANKL (also known as TNFSF11) is a potent stimulator of murine osteoclastogenesis, and activin A (ActA) enhances that stimulation in whole bone marrow. ActA treatment does not induce osteoclastogenesis in stroma-free murine bone marrow macrophage cultures (BMM), but rather inhibits RANKL-induced osteoclastogenesis. We hypothesized that ActA and RANKL differentially regulate osteoclastogenesis by modulating OCL precursors and mature OCL migration. Time-lapse video microscopy measured ActA and RANKL effects on BMM and OCL motility and function. ActA completely inhibited RANKL-stimulated OCL motility, differentiation and bone resorption, through a mechanism mediated by ActA-dependent changes in SMAD2, AKT1 and inhibitor of nuclear factor κB (IκB) signaling. The potent and dominant inhibitory effect of ActA was associated with decreased OCL lifespan because ActA significantly increased activated caspase-3 in mature OCL and OCL precursors. Collectively, these data demonstrate a dual action for ActA on murine OCLs.
منابع مشابه
Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand.
Bone is a major storage site for TGFbeta superfamily members, including TGFbeta and bone morphogenetic proteins. It is believed that these cytokines are released from bone during bone resorption. Recent studies have shown that both RANKL and macrophage colony-stimulating factor are two essential factors produced by osteoblasts for inducing osteoclast differentiation. In the present study we exa...
متن کاملPhytocomponent p-hydroxycinnamic acid inhibits osteoclast-like cell formation in mouse bone marrow cultures.
The phytocomponent p-hydroxycinnamic acid (HCA) has been shown to have inhibitory effects on bone-resorbing factor-stimulated bone resorption in rat femoral tissues in vitro. The effects of HCA on osteoclast-like cell formation in mouse bone marrow cultures in vitro were investigated. The bone marrow cells were cultured for 7 days in alpha-minimal essential medium containing a bone-resorbing ag...
متن کاملEffect of Cornus Officinalis on Receptor Activator of Nuclear Factor-kappaB Ligand (RANKL)-induced Osteoclast Differentiation
OBJECTIVES Osteoporosis is a disease of bones that is thought to result from an imbalance between bone resorption and bone formation. Although osteoporosis itself has no symptoms, osteoporosis caused by osteoclasts leads to an increased risk of fracture. Here we examined the effects of cornus officinalis on receptor activator of nuclear factor-kappaB ligand (RANKL)-mediated osteoclast different...
متن کاملArctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways
Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteocla...
متن کاملRhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 Signaling
Rhinacanthin C is a naphthoquinone ester with anti-inflammatory activity, found in Rhinacanthus nasutus (L) Kurz (Acanthaceae). We found that rhinacanthin C inhibited osteoclast differentiation stimulated by the receptor activator of nuclear factor-κB ligand (RANKL) in mouse bone marrow macrophage cultures, although the precise molecular mechanisms underlying this phenomenon are unclear. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 128 4 شماره
صفحات -
تاریخ انتشار 2015